Wood has many benefits in construction, one of the most significant is that it is kind to the environment and contributes to climate smart building.
By Swedish Wood | Photos by Pixabay
Through photosynthesis, growing trees store carbon dioxide in the form of carbon compounds and the faster the forest grows; the more carbon dioxide is captured. From a climate perspective, it is therefore better
to manage the forest and use the wood than to leave the forest untouched.
Carbon dioxide that is stored in the trees remains in place throughout the life of the tree, even after it has been turned into a wood product. Therefore, it is particularly good to use wood for large and long-lasting products such as the structural frames of buildings.
Wood has climate benefits in every phase
- Production phase
The energy required to saw and plane wood products is relatively low and the by-products (such as bark and wood chips) are used as biofuel for the sawmills’ drying kilns. - Usage phase
Wooden buildings and products store carbon dioxide for their entire life.
Increasing the use of wood in construction can cut the use of other construction materials from non-renewable sources, which in turn will reduce carbon emissions, which is called the substitution effect.
Wood is a flexible material, and wooden buildings are easy to refit and extend, so they can enjoy a long useful life.
Building regulations on low energy use are easily achieved with wood construction systems. In addition, wood has good heat insulation properties, which reduces the need for extra insulation.
Wood can be reused; flooring and windows, for example, can be reclaimed and used in another building. This prolongs the time that the carbon dioxide remains stored. Wood can also go through material recovery and be used in the manufacture of fibreboard, for example. - End-of-life phase
At the end of their service life, wood products are used as biofuel and replace fossil fuels, which is also an important benefit for the environment
When end-of-life wood products are used as biofuel or composted, the stored carbon dioxide is released. But in contrast to carbon emissions from fossil fuels, the incineration of wood does not add new quantities of carbon dioxide to the atmosphere. The released carbon dioxide is instead absorbed by newly planted and growing trees through photosynthesis. The circle is therefore closed, and a new eco-cycle can begin.

Wood can go through material recovery and be used in the
manufacture of fibreboard.
Minimal carbon footprint
So far, the main focus of the debate on buildings’ environmental impact has been on the usage phase, which is the time from completion of the building until it is demolished. But to gain a full picture of energy consumption, we should also look at the construction phase. Because, even if we build zero energy buildings, the fact remains that the manufacture of the construction materials and the actual construction phase have a negative impact on our climate. It is therefore important to use construction materials and construction methods that have a minimal carbon footprint.
Modern construction methods that use wood make it possible to achieve a minimal impact on the climate from buildings that also meet today’s demands for reduced energy consumption. Wood is nature’s own solution to the climate issue.
“A four-storey building in wood provides net storage of 150t of carbon dioxide.”
According to research conducted by Mid Sweden University, a four-storey building in wood provides net storage of 150t of carbon dioxide because the wood stores the carbon dioxide absorbed by the growing trees. No other large-scale construction material has this capacity. The analysis takes account of the energy consumed in manufacturing the wood, in transport and in the production of the building.
Part of the solution to the climate issue is growing right here. Wood is both renewable and recyclable and has a remarkable capacity to store carbon dioxide.
A renewable material

Carbon dioxide that is stored in trees remains in place throughout the life of the tree, even after it has been turned into a wood product.
The construction sector in Sweden emits carbon dioxide at an annual rate of 10 million tonnes, which is equal to all car traffic combined each year. Many commentators believe that a need exists to review the way in which building is done and the impact construction has on the climate. We need to see change.
Wood will be a vital resource in this change, with the material not yet reaching its full potential in the construction sector. We will be able to build more large buildings in wood in years to come.
The Kyoto Protocol’s international commitments to cut emissions of carbon dioxide are likely to lead to an increased use of timber in buildings. Many countries have launched national wood construction programmes as part of their strategy to replace more energy-intensive construction materials with wood. Interest and investment in wood construction techniques is growing all over the world – even in countries with little in the way of domestic forest raw material.
The key benefits of building with timber can be summarised in the following five points, the first four of which relate directly to the material and the fifth to the construction technique:
- Low energy consumption when extracting wood products for construction purposes from the forest, plus a large quantity of carbon neutral bioenergy stored in wood products. Carbon neutral means, in principle, that if the wood is incinerated in its end-of-life phase for bioenergy, the amount of carbon dioxide emitted at that point is equivalent to the amount originally absorbed by the tree. As such, there is no net addition of carbon dioxide to the atmosphere. The storage of carbon dioxide in the building (wood material) can be seen as a postponed neutralisation of the carbon dioxide stored.
- During the usage phase, a wood product stores carbon equating to around the same amount of atmospheric carbon dioxide as the wood product weighs.
- During demolition and removal, wood products can be sent for energy recovery, which usually releases considerably more energy than is used to produce the building. This energy is carbon neutral and replaces fossil energy sources.
- In stark contrast to other construction materials, building in wood is based on a renewable natural resource and does not consume finite raw materials.
- Producing well-insulated apartment blocks with a wooden structural frame is resource-efficient, with reduced transport and rapid assembly. In addition, the construction site does not need to be as big and the
noise levels are considerably lower, much to the relief of local neighbours.
Once wood can no longer be reused, or its material recovered for use in fibreboard and other sheet materials for example, it can still generate energy through incineration. This energy is climate-neutral and is in fact stored solar energy. The carbon dioxide released during incineration was once absorbed by the tree as it grew in the forest.
In 2008, the European Parliament approved a climate package with the overall aim to prevent global warming from increasing by more than two degrees, compared with pre-industrialisation. The European Union (EU) has agreed four targets that must be met by 2020.
Based on the first three, these targets are often referred to as the 20-20-20 targets as follows:
- Reducing greenhouse gas emissions by at least 20% compared with 1990 levels.
- Moving towards a 20% increase in energy efficiency.
- Increasing the share of renewable energy in final energy consumption to 20%.
- A 10% share of renewables in the transport sector.
It is important for the industry to work together in achieving the climate objectives. Many initiatives have already been launched, but there is still a long way to go.